推广 热搜: 区域  脉动真空灭菌器  医院信息系统  医院信息化  医院  招标  标识  CA认证  标志  导视 

Nature封面重磅:人工智能一出马,人类医生就败下阵来

   日期:2017-02-13     浏览:117    
核心提示:发布日期:2017-02-13 皮肤癌是人类最为常见的恶性肿瘤之一。理论上讲,出现在皮肤表面的它

发布日期:2017-02-13

皮肤癌是人类最为常见的恶性肿瘤之一。理论上讲,出现在皮肤表面的它们很容易就能被发现,但人们却往往因为皮肤癌与痣长得过于相像,而粗心大意,将它们忽略。等到病情恶化时,则已经为时过晚。

 

这也怨不得普通人。鉴定皮肤癌是一项复杂的工作,医生要分析它的外形和特征,甚至要动用活检技术,从患者的组织上切下一块来,才能确定皮肤上的异物是否真的发生了癌变。这对于没有医学知识的普通人而言,显然是太复杂了。

 

上周,发表在《自然》(Nature)杂志上的一篇论文给我们提供了一项方便的工具。而它的背后,则是现在火爆得不行的深度学习和人工智能。

 

 

▲ 在人工智能眼里,皮肤病是这样的(图片来源:Nature)

 

众所周知,机器的学习能力远非人类能相提并论。在这项研究中,科学家们让一个“卷积神经网络”(Convolutional Neural Network)分析了将近13万张临床上的皮肤癌图片,这个数字比现在最大的研究高出了2个数量级。在大量的学习资料下,这个神经网络迅速成为了一名皮肤癌的专家。

 

都说实践是检验真理的唯一标准。这个神经网络究竟准不准,也只有靠实践来测试了。与它一同站上擂台的,是21名资深的皮肤科医生。一场医学领域的“人机大战”一触即发。

 

 

                        

▲ 看似接近的不同皮肤病,在人工智能眼里,却有着完全不同的意味(图片来源:Nature)

 

在第一场挑战中,这个神经网络与医生们一同区分两种不同的皮肤疾病——角质细胞癌与良性脂溢性角化病。前者是最为常见的皮肤癌。这一比较发现,综合灵敏性和特异性来看,这个神经网络的表现比大部分参与研究的皮肤科医生都要好。

 

不服气的人类做了第二项测试,这次他们比较的是恶性黑色素瘤与良性的痣。前者是最具杀伤力的皮肤癌。但在这场比试中,人类也同样败下阵来。

 

更夸张的是,人类的医生需要十多年的训练和培养,还需要一代一代传承。而人工智能则完全没有这方面的限制。事实上,它只会变得越来越好。

 

 

▲ 这项研究登上了《Nature》的封面(图片来源:Nature)

 

这对人类意味着什么呢?据估计,到2021年,全世界大约会有63亿台手机,差不多人手一台。如果在这些手机上安装分析程序,那就相当于有了63亿名专业的皮肤科医生。到了那个时候,每个人都能方便地对自己皮肤上的异物进行拍照,扫描和分析,第一时间知道自己的患病风险。

 

一个让人兴奋的人工智能时代,正在到来!

来源:药明康德

 
 
更多>同类资讯中心

推荐图文
推荐资讯中心
点击排行
网站首页  |  会员中心  |  幸会,有你~  |  会员服务一览表  |  匠心商学院简介  |  关于我们  |  联系方式  |  使用协议  |  版权隐私  |  网站地图  |  排名推广  |  积分换礼  |  网站留言  |  违规举报

©59医疗器械网 All Rights Reserved

豫ICP备14006337号-1 增值电信业务经营许可证:豫B2-20241261 互联网药品信息服务许可资格证书:(豫)-经营性-2019-0004 (豫)网械平台备字(2018)第00051号

提示:本网站信息仅供医疗行业专业人士使用,本平台上的提供的信息展示查询和搜索服务,旨为方便医械行业同仁,招商项目和投资合作有风险需谨慎,请双方谨慎交易,以确保自身权益!